home *** CD-ROM | disk | FTP | other *** search
- /* dfa - DFA construction routines */
-
- /*-
- * Copyright (c) 1990 The Regents of the University of California.
- * All rights reserved.
- *
- * This code is derived from software contributed to Berkeley by
- * Vern Paxson.
- *
- * The United States Government has rights in this work pursuant
- * to contract no. DE-AC03-76SF00098 between the United States
- * Department of Energy and the University of California.
- *
- * Redistribution and use in source and binary forms are permitted provided
- * that: (1) source distributions retain this entire copyright notice and
- * comment, and (2) distributions including binaries display the following
- * acknowledgement: ``This product includes software developed by the
- * University of California, Berkeley and its contributors'' in the
- * documentation or other materials provided with the distribution and in
- * all advertising materials mentioning features or use of this software.
- * Neither the name of the University nor the names of its contributors may
- * be used to endorse or promote products derived from this software without
- * specific prior written permission.
- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
- * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
- */
-
- #ifndef lint
- static char rcsid[] =
- "@(#) $Header: /usr/fsys/odin/a/vern/flex/RCS/dfa.c,v 2.7 90/06/27 23:48:15 vern Exp $ (LBL)";
- #endif
-
- #include "flexdef.h"
-
-
- /* declare functions that have forward references */
-
- void dump_associated_rules PROTO((FILE*, int));
- void dump_transitions PROTO((FILE*, int[]));
- void sympartition PROTO((int[], int, int[], int[]));
- int symfollowset PROTO((int[], int, int, int[]));
-
-
- /* check_for_backtracking - check a DFA state for backtracking
- *
- * synopsis
- * int ds, state[numecs];
- * check_for_backtracking( ds, state );
- *
- * ds is the number of the state to check and state[] is its out-transitions,
- * indexed by equivalence class, and state_rules[] is the set of rules
- * associated with this state
- */
-
- void check_for_backtracking( ds, state )
- int ds;
- int state[];
-
- {
- if ( (reject && ! dfaacc[ds].dfaacc_set) || ! dfaacc[ds].dfaacc_state )
- { /* state is non-accepting */
- ++num_backtracking;
-
- if ( backtrack_report )
- {
- fprintf( backtrack_file, "State #%d is non-accepting -\n", ds );
-
- /* identify the state */
- dump_associated_rules( backtrack_file, ds );
-
- /* now identify it further using the out- and jam-transitions */
- dump_transitions( backtrack_file, state );
-
- putc( '\n', backtrack_file );
- }
- }
- }
-
-
- /* check_trailing_context - check to see if NFA state set constitutes
- * "dangerous" trailing context
- *
- * synopsis
- * int nfa_states[num_states+1], num_states;
- * int accset[nacc+1], nacc;
- * check_trailing_context( nfa_states, num_states, accset, nacc );
- *
- * NOTES
- * Trailing context is "dangerous" if both the head and the trailing
- * part are of variable size \and/ there's a DFA state which contains
- * both an accepting state for the head part of the rule and NFA states
- * which occur after the beginning of the trailing context.
- * When such a rule is matched, it's impossible to tell if having been
- * in the DFA state indicates the beginning of the trailing context
- * or further-along scanning of the pattern. In these cases, a warning
- * message is issued.
- *
- * nfa_states[1 .. num_states] is the list of NFA states in the DFA.
- * accset[1 .. nacc] is the list of accepting numbers for the DFA state.
- */
-
- void check_trailing_context( nfa_states, num_states, accset, nacc )
- int *nfa_states, num_states;
- int *accset;
- register int nacc;
-
- {
- register int i, j;
-
- for ( i = 1; i <= num_states; ++i )
- {
- int ns = nfa_states[i];
- register int type = state_type[ns];
- register int ar = assoc_rule[ns];
-
- if ( type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE )
- { /* do nothing */
- }
-
- else if ( type == STATE_TRAILING_CONTEXT )
- {
- /* potential trouble. Scan set of accepting numbers for
- * the one marking the end of the "head". We assume that
- * this looping will be fairly cheap since it's rare that
- * an accepting number set is large.
- */
- for ( j = 1; j <= nacc; ++j )
- if ( accset[j] & YY_TRAILING_HEAD_MASK )
- {
- fprintf( stderr,
- "%s: Dangerous trailing context in rule at line %d\n",
- program_name, rule_linenum[ar] );
- return;
- }
- }
- }
- }
-
-
- /* dump_associated_rules - list the rules associated with a DFA state
- *
- * synopisis
- * int ds;
- * FILE *file;
- * dump_associated_rules( file, ds );
- *
- * goes through the set of NFA states associated with the DFA and
- * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
- * and writes a report to the given file
- */
-
- void dump_associated_rules( file, ds )
- FILE *file;
- int ds;
-
- {
- register int i, j;
- register int num_associated_rules = 0;
- int rule_set[MAX_ASSOC_RULES + 1];
- int *dset = dss[ds];
- int size = dfasiz[ds];
-
- for ( i = 1; i <= size; ++i )
- {
- register rule_num = rule_linenum[assoc_rule[dset[i]]];
-
- for ( j = 1; j <= num_associated_rules; ++j )
- if ( rule_num == rule_set[j] )
- break;
-
- if ( j > num_associated_rules )
- { /* new rule */
- if ( num_associated_rules < MAX_ASSOC_RULES )
- rule_set[++num_associated_rules] = rule_num;
- }
- }
-
- bubble( rule_set, num_associated_rules );
-
- fprintf( file, " associated rule line numbers:" );
-
- for ( i = 1; i <= num_associated_rules; ++i )
- {
- if ( i % 8 == 1 )
- putc( '\n', file );
-
- fprintf( file, "\t%d", rule_set[i] );
- }
-
- putc( '\n', file );
- }
-
-
- /* dump_transitions - list the transitions associated with a DFA state
- *
- * synopisis
- * int state[numecs];
- * FILE *file;
- * dump_transitions( file, state );
- *
- * goes through the set of out-transitions and lists them in human-readable
- * form (i.e., not as equivalence classes); also lists jam transitions
- * (i.e., all those which are not out-transitions, plus EOF). The dump
- * is done to the given file.
- */
-
- void dump_transitions( file, state )
- FILE *file;
- int state[];
-
- {
- register int i, ec;
- int out_char_set[CSIZE];
-
- for ( i = 0; i < csize; ++i )
- {
- ec = abs( ecgroup[i] );
- out_char_set[i] = state[ec];
- }
-
- fprintf( file, " out-transitions: " );
-
- list_character_set( file, out_char_set );
-
- /* now invert the members of the set to get the jam transitions */
- for ( i = 0; i < csize; ++i )
- out_char_set[i] = ! out_char_set[i];
-
- fprintf( file, "\n jam-transitions: EOF " );
-
- list_character_set( file, out_char_set );
-
- putc( '\n', file );
- }
-
-
- /* epsclosure - construct the epsilon closure of a set of ndfa states
- *
- * synopsis
- * int t[current_max_dfa_size], numstates, accset[num_rules + 1], nacc;
- * int hashval;
- * int *epsclosure();
- * t = epsclosure( t, &numstates, accset, &nacc, &hashval );
- *
- * NOTES
- * the epsilon closure is the set of all states reachable by an arbitrary
- * number of epsilon transitions which themselves do not have epsilon
- * transitions going out, unioned with the set of states which have non-null
- * accepting numbers. t is an array of size numstates of nfa state numbers.
- * Upon return, t holds the epsilon closure and numstates is updated. accset
- * holds a list of the accepting numbers, and the size of accset is given
- * by nacc. t may be subjected to reallocation if it is not large enough
- * to hold the epsilon closure.
- *
- * hashval is the hash value for the dfa corresponding to the state set
- */
-
- int *epsclosure( t, ns_addr, accset, nacc_addr, hv_addr )
- int *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
-
- {
- register int stkpos, ns, tsp;
- int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
- int stkend, nstate;
- static int did_stk_init = false, *stk;
-
- #define MARK_STATE(state) \
- trans1[state] = trans1[state] - MARKER_DIFFERENCE;
-
- #define IS_MARKED(state) (trans1[state] < 0)
-
- #define UNMARK_STATE(state) \
- trans1[state] = trans1[state] + MARKER_DIFFERENCE;
-
- #define CHECK_ACCEPT(state) \
- { \
- nfaccnum = accptnum[state]; \
- if ( nfaccnum != NIL ) \
- accset[++nacc] = nfaccnum; \
- }
-
- #define DO_REALLOCATION \
- { \
- current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
- ++num_reallocs; \
- t = reallocate_integer_array( t, current_max_dfa_size ); \
- stk = reallocate_integer_array( stk, current_max_dfa_size ); \
- } \
-
- #define PUT_ON_STACK(state) \
- { \
- if ( ++stkend >= current_max_dfa_size ) \
- DO_REALLOCATION \
- stk[stkend] = state; \
- MARK_STATE(state) \
- }
-
- #define ADD_STATE(state) \
- { \
- if ( ++numstates >= current_max_dfa_size ) \
- DO_REALLOCATION \
- t[numstates] = state; \
- hashval = hashval + state; \
- }
-
- #define STACK_STATE(state) \
- { \
- PUT_ON_STACK(state) \
- CHECK_ACCEPT(state) \
- if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
- ADD_STATE(state) \
- }
-
- if ( ! did_stk_init )
- {
- stk = allocate_integer_array( current_max_dfa_size );
- did_stk_init = true;
- }
-
- nacc = stkend = hashval = 0;
-
- for ( nstate = 1; nstate <= numstates; ++nstate )
- {
- ns = t[nstate];
-
- /* the state could be marked if we've already pushed it onto
- * the stack
- */
- if ( ! IS_MARKED(ns) )
- PUT_ON_STACK(ns)
-
- CHECK_ACCEPT(ns)
- hashval = hashval + ns;
- }
-
- for ( stkpos = 1; stkpos <= stkend; ++stkpos )
- {
- ns = stk[stkpos];
- transsym = transchar[ns];
-
- if ( transsym == SYM_EPSILON )
- {
- tsp = trans1[ns] + MARKER_DIFFERENCE;
-
- if ( tsp != NO_TRANSITION )
- {
- if ( ! IS_MARKED(tsp) )
- STACK_STATE(tsp)
-
- tsp = trans2[ns];
-
- if ( tsp != NO_TRANSITION )
- if ( ! IS_MARKED(tsp) )
- STACK_STATE(tsp)
- }
- }
- }
-
- /* clear out "visit" markers */
-
- for ( stkpos = 1; stkpos <= stkend; ++stkpos )
- {
- if ( IS_MARKED(stk[stkpos]) )
- {
- UNMARK_STATE(stk[stkpos])
- }
- else
- flexfatal( "consistency check failed in epsclosure()" );
- }
-
- *ns_addr = numstates;
- *hv_addr = hashval;
- *nacc_addr = nacc;
-
- return ( t );
- }
-
-
- /* increase_max_dfas - increase the maximum number of DFAs */
-
- void increase_max_dfas()
-
- {
- current_max_dfas += MAX_DFAS_INCREMENT;
-
- ++num_reallocs;
-
- base = reallocate_integer_array( base, current_max_dfas );
- def = reallocate_integer_array( def, current_max_dfas );
- dfasiz = reallocate_integer_array( dfasiz, current_max_dfas );
- accsiz = reallocate_integer_array( accsiz, current_max_dfas );
- dhash = reallocate_integer_array( dhash, current_max_dfas );
- dss = reallocate_int_ptr_array( dss, current_max_dfas );
- dfaacc = reallocate_dfaacc_union( dfaacc, current_max_dfas );
-
- if ( nultrans )
- nultrans = reallocate_integer_array( nultrans, current_max_dfas );
- }
-
-
- /* ntod - convert an ndfa to a dfa
- *
- * synopsis
- * ntod();
- *
- * creates the dfa corresponding to the ndfa we've constructed. the
- * dfa starts out in state #1.
- */
-
- void ntod()
-
- {
- int *accset, ds, nacc, newds;
- int sym, hashval, numstates, dsize;
- int num_full_table_rows; /* used only for -f */
- int *nset, *dset;
- int targptr, totaltrans, i, comstate, comfreq, targ;
- int *epsclosure(), snstods(), symlist[CSIZE + 1];
- int num_start_states;
- int todo_head, todo_next;
-
- /* note that the following are indexed by *equivalence classes*
- * and not by characters. Since equivalence classes are indexed
- * beginning with 1, even if the scanner accepts NUL's, this
- * means that (since every character is potentially in its own
- * equivalence class) these arrays must have room for indices
- * from 1 to CSIZE, so their size must be CSIZE + 1.
- */
- int duplist[CSIZE + 1], state[CSIZE + 1];
- int targfreq[CSIZE + 1], targstate[CSIZE + 1];
-
- /* this is so find_table_space(...) will know where to start looking in
- * chk/nxt for unused records for space to put in the state
- */
- if ( fullspd )
- firstfree = 0;
-
- accset = allocate_integer_array( num_rules + 1 );
- nset = allocate_integer_array( current_max_dfa_size );
-
- /* the "todo" queue is represented by the head, which is the DFA
- * state currently being processed, and the "next", which is the
- * next DFA state number available (not in use). We depend on the
- * fact that snstods() returns DFA's \in increasing order/, and thus
- * need only know the bounds of the dfas to be processed.
- */
- todo_head = todo_next = 0;
-
- for ( i = 0; i <= csize; ++i )
- {
- duplist[i] = NIL;
- symlist[i] = false;
- }
-
- for ( i = 0; i <= num_rules; ++i )
- accset[i] = NIL;
-
- if ( trace )
- {
- dumpnfa( scset[1] );
- fputs( "\n\nDFA Dump:\n\n", stderr );
- }
-
- inittbl();
-
- /* check to see whether we should build a separate table for transitions
- * on NUL characters. We don't do this for full-speed (-F) scanners,
- * since for them we don't have a simple state number lying around with
- * which to index the table. We also don't bother doing it for scanners
- * unless (1) NUL is in its own equivalence class (indicated by a
- * positive value of ecgroup[NUL]), (2) NUL's equilvalence class is
- * the last equivalence class, and (3) the number of equivalence classes
- * is the same as the number of characters. This latter case comes about
- * when useecs is false or when its true but every character still
- * manages to land in its own class (unlikely, but it's cheap to check
- * for). If all these things are true then the character code needed
- * to represent NUL's equivalence class for indexing the tables is
- * going to take one more bit than the number of characters, and therefore
- * we won't be assured of being able to fit it into a YY_CHAR variable.
- * This rules out storing the transitions in a compressed table, since
- * the code for interpreting them uses a YY_CHAR variable (perhaps it
- * should just use an integer, though; this is worth pondering ... ###).
- *
- * Finally, for full tables, we want the number of entries in the
- * table to be a power of two so the array references go fast (it
- * will just take a shift to compute the major index). If encoding
- * NUL's transitions in the table will spoil this, we give it its
- * own table (note that this will be the case if we're not using
- * equivalence classes).
- */
-
- /* note that the test for ecgroup[0] == numecs below accomplishes
- * both (1) and (2) above
- */
- if ( ! fullspd && ecgroup[0] == numecs )
- { /* NUL is alone in its equivalence class, which is the last one */
- int use_NUL_table = (numecs == csize);
-
- if ( fulltbl && ! use_NUL_table )
- { /* we still may want to use the table if numecs is a power of 2 */
- int power_of_two;
-
- for ( power_of_two = 1; power_of_two <= csize; power_of_two *= 2 )
- if ( numecs == power_of_two )
- {
- use_NUL_table = true;
- break;
- }
- }
-
- if ( use_NUL_table )
- nultrans = allocate_integer_array( current_max_dfas );
- /* from now on, nultrans != nil indicates that we're
- * saving null transitions for later, separate encoding
- */
- }
-
-
- if ( fullspd )
- {
- for ( i = 0; i <= numecs; ++i )
- state[i] = 0;
- place_state( state, 0, 0 );
- }
-
- else if ( fulltbl )
- {
- if ( nultrans )
- /* we won't be including NUL's transitions in the table,
- * so build it for entries from 0 .. numecs - 1
- */
- num_full_table_rows = numecs;
-
- else
- /* take into account the fact that we'll be including
- * the NUL entries in the transition table. Build it
- * from 0 .. numecs.
- */
- num_full_table_rows = numecs + 1;
-
- /* declare it "short" because it's a real long-shot that that
- * won't be large enough.
- */
- printf( "static short int yy_nxt[][%d] =\n {\n",
- /* '}' so vi doesn't get too confused */
- num_full_table_rows );
-
- /* generate 0 entries for state #0 */
- for ( i = 0; i < num_full_table_rows; ++i )
- mk2data( 0 );
-
- /* force ',' and dataflush() next call to mk2data */
- datapos = NUMDATAITEMS;
-
- /* force extra blank line next dataflush() */
- dataline = NUMDATALINES;
- }
-
- /* create the first states */
-
- num_start_states = lastsc * 2;
-
- for ( i = 1; i <= num_start_states; ++i )
- {
- numstates = 1;
-
- /* for each start condition, make one state for the case when
- * we're at the beginning of the line (the '%' operator) and
- * one for the case when we're not
- */
- if ( i % 2 == 1 )
- nset[numstates] = scset[(i / 2) + 1];
- else
- nset[numstates] = mkbranch( scbol[i / 2], scset[i / 2] );
-
- nset = epsclosure( nset, &numstates, accset, &nacc, &hashval );
-
- if ( snstods( nset, numstates, accset, nacc, hashval, &ds ) )
- {
- numas += nacc;
- totnst += numstates;
- ++todo_next;
-
- if ( variable_trailing_context_rules && nacc > 0 )
- check_trailing_context( nset, numstates, accset, nacc );
- }
- }
-
- if ( ! fullspd )
- {
- if ( ! snstods( nset, 0, accset, 0, 0, &end_of_buffer_state ) )
- flexfatal( "could not create unique end-of-buffer state" );
-
- ++numas;
- ++num_start_states;
- ++todo_next;
- }
-
- while ( todo_head < todo_next )
- {
- targptr = 0;
- totaltrans = 0;
-
- for ( i = 1; i <= numecs; ++i )
- state[i] = 0;
-
- ds = ++todo_head;
-
- dset = dss[ds];
- dsize = dfasiz[ds];
-
- if ( trace )
- fprintf( stderr, "state # %d:\n", ds );
-
- sympartition( dset, dsize, symlist, duplist );
-
- for ( sym = 1; sym <= numecs; ++sym )
- {
- if ( symlist[sym] )
- {
- symlist[sym] = 0;
-
- if ( duplist[sym] == NIL )
- { /* symbol has unique out-transitions */
- numstates = symfollowset( dset, dsize, sym, nset );
- nset = epsclosure( nset, &numstates, accset,
- &nacc, &hashval );
-
- if ( snstods( nset, numstates, accset,
- nacc, hashval, &newds ) )
- {
- totnst = totnst + numstates;
- ++todo_next;
- numas += nacc;
-
- if ( variable_trailing_context_rules && nacc > 0 )
- check_trailing_context( nset, numstates,
- accset, nacc );
- }
-
- state[sym] = newds;
-
- if ( trace )
- fprintf( stderr, "\t%d\t%d\n", sym, newds );
-
- targfreq[++targptr] = 1;
- targstate[targptr] = newds;
- ++numuniq;
- }
-
- else
- {
- /* sym's equivalence class has the same transitions
- * as duplist(sym)'s equivalence class
- */
- targ = state[duplist[sym]];
- state[sym] = targ;
-
- if ( trace )
- fprintf( stderr, "\t%d\t%d\n", sym, targ );
-
- /* update frequency count for destination state */
-
- i = 0;
- while ( targstate[++i] != targ )
- ;
-
- ++targfreq[i];
- ++numdup;
- }
-
- ++totaltrans;
- duplist[sym] = NIL;
- }
- }
-
- numsnpairs = numsnpairs + totaltrans;
-
- if ( caseins && ! useecs )
- {
- register int j;
-
- for ( i = 'A', j = 'a'; i <= 'Z'; ++i, ++j )
- state[i] = state[j];
- }
-
- if ( ds > num_start_states )
- check_for_backtracking( ds, state );
-
- if ( nultrans )
- {
- nultrans[ds] = state[NUL_ec];
- state[NUL_ec] = 0; /* remove transition */
- }
-
- if ( fulltbl )
- {
- /* supply array's 0-element */
- if ( ds == end_of_buffer_state )
- mk2data( -end_of_buffer_state );
- else
- mk2data( end_of_buffer_state );
-
- for ( i = 1; i < num_full_table_rows; ++i )
- /* jams are marked by negative of state number */
- mk2data( state[i] ? state[i] : -ds );
-
- /* force ',' and dataflush() next call to mk2data */
- datapos = NUMDATAITEMS;
-
- /* force extra blank line next dataflush() */
- dataline = NUMDATALINES;
- }
-
- else if ( fullspd )
- place_state( state, ds, totaltrans );
-
- else if ( ds == end_of_buffer_state )
- /* special case this state to make sure it does what it's
- * supposed to, i.e., jam on end-of-buffer
- */
- stack1( ds, 0, 0, JAMSTATE );
-
- else /* normal, compressed state */
- {
- /* determine which destination state is the most common, and
- * how many transitions to it there are
- */
-
- comfreq = 0;
- comstate = 0;
-
- for ( i = 1; i <= targptr; ++i )
- if ( targfreq[i] > comfreq )
- {
- comfreq = targfreq[i];
- comstate = targstate[i];
- }
-
- bldtbl( state, ds, totaltrans, comstate, comfreq );
- }
- }
-
- if ( fulltbl )
- dataend();
-
- else if ( ! fullspd )
- {
- cmptmps(); /* create compressed template entries */
-
- /* create tables for all the states with only one out-transition */
- while ( onesp > 0 )
- {
- mk1tbl( onestate[onesp], onesym[onesp], onenext[onesp],
- onedef[onesp] );
- --onesp;
- }
-
- mkdeftbl();
- }
- }
-
-
- /* snstods - converts a set of ndfa states into a dfa state
- *
- * synopsis
- * int sns[numstates], numstates, newds, accset[num_rules + 1], nacc, hashval;
- * int snstods();
- * is_new_state = snstods( sns, numstates, accset, nacc, hashval, &newds );
- *
- * on return, the dfa state number is in newds.
- */
-
- int snstods( sns, numstates, accset, nacc, hashval, newds_addr )
- int sns[], numstates, accset[], nacc, hashval, *newds_addr;
-
- {
- int didsort = 0;
- register int i, j;
- int newds, *oldsns;
-
- for ( i = 1; i <= lastdfa; ++i )
- if ( hashval == dhash[i] )
- {
- if ( numstates == dfasiz[i] )
- {
- oldsns = dss[i];
-
- if ( ! didsort )
- {
- /* we sort the states in sns so we can compare it to
- * oldsns quickly. we use bubble because there probably
- * aren't very many states
- */
- bubble( sns, numstates );
- didsort = 1;
- }
-
- for ( j = 1; j <= numstates; ++j )
- if ( sns[j] != oldsns[j] )
- break;
-
- if ( j > numstates )
- {
- ++dfaeql;
- *newds_addr = i;
- return ( 0 );
- }
-
- ++hshcol;
- }
-
- else
- ++hshsave;
- }
-
- /* make a new dfa */
-
- if ( ++lastdfa >= current_max_dfas )
- increase_max_dfas();
-
- newds = lastdfa;
-
- dss[newds] = (int *) malloc( (unsigned) ((numstates + 1) * sizeof( int )) );
-
- if ( ! dss[newds] )
- flexfatal( "dynamic memory failure in snstods()" );
-
- /* if we haven't already sorted the states in sns, we do so now, so that
- * future comparisons with it can be made quickly
- */
-
- if ( ! didsort )
- bubble( sns, numstates );
-
- for ( i = 1; i <= numstates; ++i )
- dss[newds][i] = sns[i];
-
- dfasiz[newds] = numstates;
- dhash[newds] = hashval;
-
- if ( nacc == 0 )
- {
- if ( reject )
- dfaacc[newds].dfaacc_set = (int *) 0;
- else
- dfaacc[newds].dfaacc_state = 0;
-
- accsiz[newds] = 0;
- }
-
- else if ( reject )
- {
- /* we sort the accepting set in increasing order so the disambiguating
- * rule that the first rule listed is considered match in the event of
- * ties will work. We use a bubble sort since the list is probably
- * quite small.
- */
-
- bubble( accset, nacc );
-
- dfaacc[newds].dfaacc_set =
- (int *) malloc( (unsigned) ((nacc + 1) * sizeof( int )) );
-
- if ( ! dfaacc[newds].dfaacc_set )
- flexfatal( "dynamic memory failure in snstods()" );
-
- /* save the accepting set for later */
- for ( i = 1; i <= nacc; ++i )
- dfaacc[newds].dfaacc_set[i] = accset[i];
-
- accsiz[newds] = nacc;
- }
-
- else
- { /* find lowest numbered rule so the disambiguating rule will work */
- j = num_rules + 1;
-
- for ( i = 1; i <= nacc; ++i )
- if ( accset[i] < j )
- j = accset[i];
-
- dfaacc[newds].dfaacc_state = j;
- }
-
- *newds_addr = newds;
-
- return ( 1 );
- }
-
-
- /* symfollowset - follow the symbol transitions one step
- *
- * synopsis
- * int ds[current_max_dfa_size], dsize, transsym;
- * int nset[current_max_dfa_size], numstates;
- * numstates = symfollowset( ds, dsize, transsym, nset );
- */
-
- int symfollowset( ds, dsize, transsym, nset )
- int ds[], dsize, transsym, nset[];
-
- {
- int ns, tsp, sym, i, j, lenccl, ch, numstates;
- int ccllist;
-
- numstates = 0;
-
- for ( i = 1; i <= dsize; ++i )
- { /* for each nfa state ns in the state set of ds */
- ns = ds[i];
- sym = transchar[ns];
- tsp = trans1[ns];
-
- if ( sym < 0 )
- { /* it's a character class */
- sym = -sym;
- ccllist = cclmap[sym];
- lenccl = ccllen[sym];
-
- if ( cclng[sym] )
- {
- for ( j = 0; j < lenccl; ++j )
- { /* loop through negated character class */
- ch = ccltbl[ccllist + j];
-
- if ( ch == 0 )
- ch = NUL_ec;
-
- if ( ch > transsym )
- break; /* transsym isn't in negated ccl */
-
- else if ( ch == transsym )
- /* next 2 */ goto bottom;
- }
-
- /* didn't find transsym in ccl */
- nset[++numstates] = tsp;
- }
-
- else
- for ( j = 0; j < lenccl; ++j )
- {
- ch = ccltbl[ccllist + j];
-
- if ( ch == 0 )
- ch = NUL_ec;
-
- if ( ch > transsym )
- break;
-
- else if ( ch == transsym )
- {
- nset[++numstates] = tsp;
- break;
- }
- }
- }
-
- else if ( sym >= 'A' && sym <= 'Z' && caseins )
- flexfatal( "consistency check failed in symfollowset" );
-
- else if ( sym == SYM_EPSILON )
- { /* do nothing */
- }
-
- else if ( abs( ecgroup[sym] ) == transsym )
- nset[++numstates] = tsp;
-
- bottom:
- ;
- }
-
- return ( numstates );
- }
-
-
- /* sympartition - partition characters with same out-transitions
- *
- * synopsis
- * integer ds[current_max_dfa_size], numstates, duplist[numecs];
- * symlist[numecs];
- * sympartition( ds, numstates, symlist, duplist );
- */
-
- void sympartition( ds, numstates, symlist, duplist )
- int ds[], numstates, duplist[];
- int symlist[];
-
- {
- int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
-
- /* partitioning is done by creating equivalence classes for those
- * characters which have out-transitions from the given state. Thus
- * we are really creating equivalence classes of equivalence classes.
- */
-
- for ( i = 1; i <= numecs; ++i )
- { /* initialize equivalence class list */
- duplist[i] = i - 1;
- dupfwd[i] = i + 1;
- }
-
- duplist[1] = NIL;
- dupfwd[numecs] = NIL;
-
- for ( i = 1; i <= numstates; ++i )
- {
- ns = ds[i];
- tch = transchar[ns];
-
- if ( tch != SYM_EPSILON )
- {
- if ( tch < -lastccl || tch > csize )
- {
- if ( tch > csize && tch <= CSIZE )
- flexerror( "scanner requires -8 flag" );
-
- else
- flexfatal(
- "bad transition character detected in sympartition()" );
- }
-
- if ( tch >= 0 )
- { /* character transition */
- /* abs() needed for fake %t ec's */
- int ec = abs( ecgroup[tch] );
-
- mkechar( ec, dupfwd, duplist );
- symlist[ec] = 1;
- }
-
- else
- { /* character class */
- tch = -tch;
-
- lenccl = ccllen[tch];
- cclp = cclmap[tch];
- mkeccl( ccltbl + cclp, lenccl, dupfwd, duplist, numecs,
- NUL_ec );
-
- if ( cclng[tch] )
- {
- j = 0;
-
- for ( k = 0; k < lenccl; ++k )
- {
- ich = ccltbl[cclp + k];
-
- if ( ich == 0 )
- ich = NUL_ec;
-
- for ( ++j; j < ich; ++j )
- symlist[j] = 1;
- }
-
- for ( ++j; j <= numecs; ++j )
- symlist[j] = 1;
- }
-
- else
- for ( k = 0; k < lenccl; ++k )
- {
- ich = ccltbl[cclp + k];
-
- if ( ich == 0 )
- ich = NUL_ec;
-
- symlist[ich] = 1;
- }
- }
- }
- }
- }
-